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ABSTRACT 

The potential predictability of surface-air temperature and precipitation over the United 

States continent was assessed for a GCM forced by observed sea surface temperatures and an 

estimate of observed ground soil moisture contents. The latter was obtained by substituting the 

GCM simulated precipitation, which is used to drive the GCM’s land-surface component, with 

observed pentad-mean precipitation at each time step of the model’s integration. With this 

substitution, the simulated soil moisture correlates well with an independent estimate of observed 

soil moisture in all seasons over the entire US continent. Significant enhancements on the 

predictability of surface-air temperature and precipitation were found in boreal late spring and 

summer over the US continent. Anomalous pattern correlations of precipitation and surface-air 

temperature over the US continent in the June-July-August season averaged for the 1979-2000 

period increased from 0.01 and 0.06 for the GCM simulations without precipitation substitution 

to 0.23 and 0.3 1, respectively, for the simulations with precipitation substitution. Results 

provide an estimate for the limits of potential predictability if soil moisture variability is to be 

perfectly predicted. However, this estimate may be model dependent, and needs to be 

substantiated by other modeling groups. 
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1. Introduction 

It is well known that tropical sea-surface temperature (SST) anomalies have substantial 

influence on the climate variability over North Pacific and North America in boreal winter 

through teleconnections (e.g., Wallace and Gutzler 198 1). Results from many atmospheric 

general circulation models (GCM) forced by observed SSTs have shown potential predictability 

of North American winter climate (e.g., Kumar and Hoerling 1998; Trenberth et al. 1998; Shukla 

et al. 2000). During boreal summer, however, the influence of tropical SSTs on mid-latitude 

climate variability is weak, and is primarily limited to the zonal mean component of the 

extratropical height field (Schubert et ai. 2002). Though a few studies have found that SST 

anomalies outside of the tropics might be of some predictive value (e.g., Ting and Wang 1997; 

Lau et al. 2003), a robust causal link between SST anomalies and the US summertime climate is 

yet to be established. The impact of SSTs is often blurred due to local processes and feedbacks, 

such as those associated with changes in low-level jet streams and ground soil moisture contents. 

The influence of soil moisture on precipitation and surface temperature has long been noticed, 

and is drawing even wider attention in recent years (e.g., Delworth and Manabe 1989; Atlas et al. 

1993; Wang and Kumar 1998; Fennessy and Shukla 1999; Hong and Kalnay 2000; Koster et al. 

2000; Schlosser and Milly 2002; Koster and Suarez 2001, 2003; Kanamitsu et al. 2003; Mo 

2003). 

Ground soil moisture content is primarily determined by ground water holding capacity, 

precipitation, runoff and evaporation (Delworth and Manabe 1989; Koster and Suarez 2001). In 

turn, soil moisture affects surface-air temperature and humidity by modifying the release of 

latent and sensible heat fluxes, and consequently affecting atmospheric circulation and 

precipitation. The processes involves many feedbacks, and is so complicated that often it is 

impossible to identify the cause and effect from the analysis of observational records alone. To 
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I .  

circumvent this shortcoming, atmospheric GCMs have been used by many authors to understand 

the problem. 

So far, there have been two major kinds of GCM studies. The first kind treated soil 

moisture as a boundary condition problem. Either model generated or idealized soil moisture 

anomalies were specified and maintained during model integrations to study the impact of soil 

moisture anomalies on the simulations of observed flood and drought conditions (e.g., Atlas et al. 

1993; Hong and Kalnay 2000), or on the interannual variability of model-generated precipitation 

and/or surface temperature (e.g., Koster and Suraez 1995; Koster et al. 2000; Dirmeyer 2000). 

No feedback processes associated with soil moisture were included. The second kind treated soil 

moisture as an initial value problem. These studies examined how initial soil moisture anomalies, 

once initialized, affect the predictability of precipitation and/or surface temperature. The 

feedbacks between soil moisture and the atmospheric conditions were included. Often, the 

predictability of soil moisture itself (or soil-moisture memory) was also investigated. Most of 

the studies relied on idealized model-generated soil moisture anomalies (e.g., Wang and Kumar 

1998; Schar et al. 1999; Schlosser and Milly 2002). Attempts have also been made to initialize 

the models with more realistic soil moisture anomalies, either by using soil-moisture analyses 

(Fennessy and Shukla 1999; Kanamitsu e al. 2003) or by performing spin-up simulations for 

which observed atmospheric conditions were used to force the model’s land-surface component 

before formal predictions start (Koster and Suraez 2003). These studies emphasized the 

importance of initial soil moisture anomalies. The degree to which the initialization can enhance 

the predictability of summertime precipitation and temperature is mixed, varying among models 

and with locations. 

The potential predictability in association with observed SST anomalies have been 

explored in-depth using GCM results from AMP-type experiments (e.g., Kumar and Hoerling 
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1998; Straus et al. 2003). A similar investigation on the predictability in association with 

“observed’ soil moisture anomalies have not been attempted, primarily because of the lack of 

global-scale long-term observations of soil moisture. Various ongoing land data assimilation 

system (LDAS) are filling this gap by running retrospectively and in near real-time the LDAS 

(e.g., Mitchell et al. 1999; Cosgrove et al. 2003). Satellite observations have also started to 

produce soil moisture estimations. However, there are inherent problems when independent soil 

moisture observations or analyses are used as initial or boundary conditions for GCM 

experiments. A variety of land-surface models are now being used by different GCMs, and often 

they are also different from those used in land data assimilation systems. These differences 

cause incompatibility in soil types, layers, and field capacity, and consequently different 

definitions of “dry” and “wet” conditions in the models. For example, Fennessy et al. (2000) 

used the soil moisture analysis of Huang et al. (1996) as initial conditions to perform near real- 

time seasonal prediction by the Center for Ocean-Land-Atmosphere Studies GCM. They found 

several adjustments have to be made with the soil moisture data for compatibility. 

In this study, we propose first a simple method to generate GCM soil moisture that is 

fairly realistic. We substitute the model simulated precipitation with observed precipitation 

during model integrations to force the model’s land-surface component. By doing so the 

incompatibility issue is avoided, and the feedbacks between soil moisture and the atmospheric 

conditions are also retained. Results show that the simulated soil moisture matches well with the 

Huang et al. (1996) analysis in all seasons. Then, the potential predictability of precipitation and 

surface-air temperature over the continental United States in boreal summer is explored using a 

set of ensemble GCM simulations, which are forced by observed SSTs and the almost “perfect” 

ground soil moisture contents. 
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A brief outline of this paper is as follows. Section 2 describes the National Centers for 

Environmental Prediction (NCEP) GCM and the observed SSTs and precipitation used to force 

the GCM. Given the fact that observational precipitation analyses are often presented as daily, 

pentad or monthly means, a choice has to be made of the lund of precipitation data to use. 

Following a perfect model approach, different options are evaluated in section 3. It is found that 

using pentad mean precipitation can reproduce well the land-surface features that the NCEP 

GCM simulates when no alteration of precipitation is made. Section 4 compares the GCM 

simulated soil moisture with precipitation assimilation with an observational analysis. The 

potential predictability of US summertime climate is examined in section 5. The conclusions 

and discussions are presented in section 6. 

2. Model and Data Descriptions 

The atmospheric GCM used in this study is the NCEP seasonal forecast model. It has 

been described in detail by Kanamitsu et al. (2002). In brief, the GCM has a spectral triangular 

truncation at wave number 42, and has 28 levels in the vertical direction. The horizontal grid 

spacing is approximately 3' in latitude and longitude. In the model, surface temperature is 

predicted and governed by a surface energy budget equation. Surface momentum, sensible and 

latent fluxes are parameterized using the Monin-Obukov similarity profile (Miyakoda and Sirutis 

1986). A two-layer soil model (Mahrt and Pan 1984) is used to predict soil moisture fraction, 

soil temperature and canopy water content. The top layer extends from the surface to 10 cm, and 

the deep layer extends from 10 to 200 cm. Vegetation type and cover and soil type are taken 

from the Simple Biosphere model climatology (Dorman and Sellers 1989). 

For all GCM experiments we present here, the model was forced by the observed 

For the monthly mean SSTs for the period from 1979 through 2000 (Smith et al. 1996). 
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experiments described in section 4 in which the observed precipitation was assimilated to replace 

model predicted precipitation, we used the Experimental Global Precipitation Climatology 

Project (GPCP) Pentad Precipitation Analysis, created and maintained at NCEP (Pingping Xie, 

personal communication). This dataset was defined by merging gauge and satellite observations, 

and has a resolution of 2.5" latitude by 2.5" longitude. At the time we carried out these 

experiments, this dataset was the only one available that has a fine temporal resolution, covers 

the globe and extends back to 1979. More recently, Huffman et al. (2001) produced a one- 

degree daily-mean precipitation dataset. In section 3, in the context of a perfect model approach, 

we demonstrated that results drown from this study are not biased because of the use of the 

pentad-mean precipitation instead of other types of precipitation with higher temporal resolutions. 

3. Choice of Mean Precipitation for Assimilation - A Perfect Model Assessment 

Ideally, the best choice for GCM precipitation assimilation is to have an observational 

precipitation dataset whose temporal resolution matches the time step of the model's land- 

surface physics. However, observational precipitation analyses are often presented as daily, 

pentad or monthly means. Are the modeled ground soil moisture contents and surface climate 

affected by the use of time-averaged precipitation instead of the precipitation produced by the 

model at each time step? We assess this impact from a set of comparative GCM experiments. 

We performed first a 22-year simulation for the 1979-2000 period forced by observed 

SSTs, a standard AMP-type simulation. We refer this simulation hereinafter as Cntl. Daily 

mean precipitation was saved during the CntZ run. Pentad and monthly means were subsequently 

derived. Then, three more GCM experiments were performed for the 1979-2000 period starting 

from the same single initial condition and forced by the same SSTs, except that for the land- 

surface component of the GCM the saved daily, pentad and monthly mean precipitation were 
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inserted into the GCM to replace the model predicted precipitation (referred to as Daily, Pentad 

and Monthly experimental runs, respectively). To elaborate, for instance, the Pentad run was 

carried out in such a way that the pentad precipitation derived from the Cntl run was divided 

equally and inserted into the soil moisture budget equation at each model physical step to update 

canopy water content, runoff and soil moisture fraction. The precipitation predicted by the 

model itself was ignored. The insertion is made only if the model predicted precipitation is in 

liquid phase, that is to say, snow is still predicted by the model itself. For illustration, the daily, 

pentad and monthly precipitation averaged over the US continent for 1979 are plotted in Figure 1. 

The focus of this study is on summertime surface climate in monthly to seasonal time 

scales. To understand to what extent the substitution of modeled precipitation with time- 

averaged precipitation replicates the soil moisture evolution, we compared a few land and near- 

surface properties from the experimental runs (Daily, Pentad, and Monthly) with those from the 

control run (Cntl). 

Shown in Figure 2 are percent differences of the top-layer (0-10cm) soil moisture content 

and surface-air temperature in July averaged for the 1979-2000 period between the experimental 

runs and the control run. Figure 3 are local correlations for the 22-year period in July. For all 

three experimental runs, the biases in soil moisture content and surface-air temperature are less 

than 10% everywhere over the US continent. Local correlations are generally larger than 0.9 for 

soil moisture and larger than 0.8 for surface-air temperature. The results from the Pentad run are 

rather close to the Daily run. Larger biases are found for the Monthly run. For other months in 

the warm season, we found similar results (not shown). For the cold season, even though the 

simulated soil moisture contents from the experimental runs still match rather well with that from 

the control run, surface-air temperature shows almost no correlation, indicating much stronger 

dynamical control of the atmosphere in winter than in summer. 
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These tests indicate that monthly mean statistics of the modeled land and near-surface 

properties in summer have not been seriously altered because of the use of time-averaged 

precipitation as forcing for the GCM land-surface component. In section 4, observed pentad 

mean precipitation will be used to force the GCM for our investigation of the predictability of 

US summer climate. Based on the comparisons presented in this section we feel confident that 

our results are not biased because of the choice of the pentad mean precipitation. 

4. “Perfect” Soil Moisture from Precipitation Assimilation 

Starting from different atmospheric and land-surface initial conditions, three GCM 

simulations were performed with the same observed monthly SSTs over the ocean and the 

observed GPCP pentad-mean precipitation over land for the 1979-2000 period. We refer this set 

of simulations as obs-rain. For comparison and consistency, two additional runs similar to the 

Pentad run in section 3 were performed starting from different atmospheric and land-surface 

initial conditions. We refer this set of three simulations forced by model predicted pentad-mean 

precipitation as gcm-ruin. The simulated soil moisture contents from the two sets of simulations 

were then evaluated against observations to measure the improvement in soil moisture simulation 

by precipitation assimilation. All calculations thereinafter are based on ensemble means of the 

GCM simulations. 

Currently, there are still no global and long-term observations, either on the ground or 

from satellites, of soil moisture contents suitable for climate study. For validation we rely on a 

model-based soil moisture analysis over the US continent conducted routinely at NCEP, which is 

based on the work of Huang et al. (1996). This analysis is performed with a one-layer (0-160 cm) 

soil moisture model that computes the water budget in the soil and is forced by observed monthly 

temperature and precipitation. Huang et al. (1996) showed that their model analysis compared 
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well with the soil moisture observations in Illinois in terms of climatology and interannual 

variation. The analysis has been used widely for climate diagnosis and prediction (e.g., van den 

Do01 et al. 2003; Mo 2003). 

The GCM consists of a two-layer soil model, with the top layer extends down to 10 cm 

and the lower layer from 10 cm to 200 cm. We derived the GCM soil moisture content for the 

top 160 cm by linear scaling. Figure 4 compares the 1979-2000 climate means of soil moisture 

content in the top 160 cm over the US continent in boreal summer months (June, July and 

August, respectively) between the GCM results and the Huang et al. analysis. Forced by the 

GCM’s own pentad-mean precipitation (gcm-ruin runs), the model is too wet over the 

northwestern states and two dry over the central and southern states from Iowa down to 

Louisiana and eastern Texas. These biases are greatly reduced in the obs-rain runs in which the 

observed GPCP precipitation was assimilated. Over the central to southeastern states, the model 

suffered from moderate wet biases in the gcm-ruin runs and moderate dry biases in obs-rain 

runs. 

Figure 5 presents the local correlations of soil moisture content between model 

simulations and the Huang et al. analysis for the 1979-2000 period. For the gcm-rain runs, the 

model shows no skill in soil moisture simulations, with a few exceptions over the southeastern 

states, the northern part of the Great Plains and the southwestern states. For the runs forced by 

the observed GPCP precipitation (obs-ruin runs), the correlations between the model predicted 

soil moisture and the analysis are generally larger than 0.6 over the continent. 

The result indicates that even though ground soil moisture contents are controlled by 

many parameters and physical processes such as air and ground temperatures, runoff, soil and 

vegetation types, precipitation and evaporation, and the feedbacks among the processes 

(Delworth and Manabe 1988; Koster and Suarez 2001), it is quite effective simply substituting 
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the modeled precipitation with observations if the goal is to obtain a better soil condition to force 

the atmosphere. We next investigate the potential predictability of US surface climate simulated 

by the NCEP GCM, given the so-derived “perfect” soil moisture contents. This is analogous to 

the traditional GCM investigation of predictability associated with prescribed SST anomalies 

(e.g., Kumar and Hoerling 1998; Straus et al. 2003). 

5. Potential Predictability of US Surface Climate with “Perfect” Soil Moisture 

Here the measure of predictability is defined as the contemporary correlations of monthly 

mean surface-air temperature and precipitation between model simulations and observations. 

For observations, we use monthly mean precipitation derived from the GPCP daily precipitation 

(Huffman et al. 2001), and monthly mean surface-air temperature from the global network of 

surface observations, the Climate Anomaly Monitoring System (CAMS), maintained at NCEP 

(Ropelewski et al. 1986). Figure 6 presents the correlation maps of monthly mean surface-air 

temperature over the US continent between the CAMS observation and the two sets of GCM 

experiments, gcm-ruin and obs-rain, respectively, in the three boreal summer months for the 

1979-2000 period. Correlation maps for precipitation are presented in Figure 7. If we regard 

correlations larger than 0.4 as skillful (at about the 94% significance level for a student-t test), 

the GCM has skills in predicting the surface-air temperature over only a few states when forced 

by the model’s own precipitation (Figures 6a-c), such as those over Idaho in June and July and 

over Georgia and Alabama in July. When forced by the observed GPCP precipitation, the 

model’s prediction skills are enhanced in general over many states (Figures 6d-f). The areas 

with the biggest improvement are found over Montana, the Great Plains, the Mississippi Valley, 

Texas and New Mexico. 
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For precipitation (Figure 7), when forced by the model predicted precipitation, the model 

has certain prediction skills in the northwest in June and July and in the southeast in July. Over 

many regions, the correlations are even negative (Figures 7a-c). When forced by the observed 

GPCP precipitation, the skills are improved over the entire US continent in general, although in 

June and July the model became less skillful over a few states over the northwest. 

The prediction skills described here are the potential predictability of the NCEP GCM, in 

the sense that when perfect boundary conditions of SSTs and soil moisture contents were used to 

force the model. Given the chaotic feature of the atmospheric circulation, which only to a certain 

extent is constrained by the specification of soil moisture, the prediction skill is fundamentally 

limited. With the foreknowledge of soil moisture in addition to SSTs, the enhancement in the 

predictions of precipitation and temperature is not uniform in space and time. Koster et al. (2000) 

demonstrated that for precipitation the enhancement can be detected only in the transition zones 

between dry and humid climates, where evaporation responds strongly to soil moisture changes 

and the variation in evaporation itself is also large enough to affect the overlying atmosphere. 

Our results tend to agree with their findings. 

To see the seasonal dependence of the model’s prediction skills, we computed the mean 

correlations shown in Figures 5-7 over the entire US continent and for all 12 months, and plotted 

in Figure 8 the spatial mean correlations for soil moisture, surface-air temperature and 

precipitation, respectively. The model’s simulation skill in soil moisture is greatly enhanced in 

all months when forced by the observed precipitation. The correlations for soil moisture are 

raised from almost below 0.2 for the gcm-rain runs to about 0.6 for the obs-rain in all months. 

For precipitation and surface-air temperature, enhanced simulation skills are found only in late 

spring and summer months. The correlations are raised by about 0.1 for precipitation and by up 

to 0.3 for surface-air temperature. 



We computed further the pattern correlations over the US continent for June-July-August 

averaged anomalies of soil moisture, precipitation and surface-air temperature between model 

simulations and the corresponding observations for the years from 1979 through 2000 (Figure 9). 

With precipitation assimilation (cross bars in Figure 9), the anomalous pattern correlations for 

the three variables are positive in all years. Consistent with the mean temporal correlations 

shown in Figure 8, the most significant improvement is found for soil moisture. The simulations 

for precipitation and surface-air temperature are also improved considerably. 

6. Conclusions and Discussions 

It is still a big challenge for current atmospheric GCMs to simulate accurately 

atmospheric precipitation and hence the soil moisture content. Previous studies (e.g., Fennessy 

and Shukla 1999; Kanamitsu e al. 2003; Koster and Suarez 2003) have demonstrated that GCMs 

initialized with realistic soil moisture contents can improve the prediction skills of US summer 

climate over certain regions. The potential predictability associated with soil moisture as a 

boundary forcing instead of an initial value problem has not been explored because of the 

scarcity of soil moisture observations. 

In this study, the potential predictability of precipitation and surface-air temperature over 

the US continent in boreal summer is estimated using the NCEP operational seasonal forecast 

model with precipitation assimilation and with the observed SSTs as boundary forcing over the 

oceans. The observed GPCP pentad-mean precipitation was assimilated into the model during 

model integrations to substitute the model predicted precipitation as input to the land-surface 

component of the GCM. Soil moisture contents simulated by the GCM with this simple 

precipitation substitution match well with the Huang et al. (1996) soil moisture analysis over the 

US continent in all seasons in terms of climate mean, and almost “perfectly” well in terms of 
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temporal and anomalous pattern correlations. The potential prediction kills of precipitation and 

surface-air temperature are also greatly improved in late spring and summer months over many 

states of the continent. Averaged for all years, the anomalous pattern correlations shown in 

Figure 9 for June-July-August mean precipitation and surface-air temperature are 0.0 1 and 0.06, 

for the runs without precipitation assimilation, and are raised to 0.23 and 0.31, respectively, for 

the runs with precipitation assimilation. This indicates that even though the potential 

predictability of US summer climate associated with SST anomalies is low, better prediction 

skills can still be achieved with improved modeling of ground soil moisture contents. 

Now the question is how to improve the simulation of soil moisture in GCMs. One way 

is to initialize the GCM with realistic soil moisture contents (e.g., Fennessy and Shukla 1999; 

Schlosser and Milly 2002; Kanamitsu e al. 2003; Koster and Suarez 2003). But the persistence 

or memory of soil moisture anomalies is usually small in spring and summer over the US 

continent (Wang and Kumar 1998; Schlosser and Milly 2002). Schlosser and Milly found for the 

Geophysical Fluid Dynamics Laboratory climate model the predictability timescale of soil 

moisture measured as e-folding decaying time is about 2 weeks or less in mid-latitudes during 

summer. Seasonal prediction skills of US summer climate with soil moisture anomalies treated 

as an initial value problem is limited because of the short memory of soil moisture in summer 

and the inability of current GCMs in simulating precipitation in accuracy. Results from previous 

studies showed that the degree to which the initialization can enhance the predictability of 

summertime precipitation and temperature is limited and mixed, varying among models and with 

locations. 

In this study we treat soil moisture as a boundary value problem, and demonstrated the 

appreciable prediction skills of US summer climate. Similar studies can be carried out using soil 

moisture product from land data assimilation systems (e.g., Mitchell et al. 1999; Cosgrove et al. 
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2003) to understand better the potential predictability of US summer climate for other GCMs. 

However, this approach is not practical for operational forecast because we do not know soil 

moisture or precipitation beforehand. On the other hand, given the strong dependence of soil 

moisture on precipitation as witnessed through this study, it might be helpful to apply bias 

corrections, in terms of not only mean but also spatial patterns, on GCM predicted precipitation 

during real-time seasonal forecast based on antecedent statistical relations between model 

predicted precipitation and observations. The reduction in precipitation bias might lead to 

improved simulation of soil moisture, and possibly better prediction skills of surface-air 

temperature and, in turn, precipitation itself. This kind of model-output-statistics (MOS) 

adjustment has been applied to, for instance, surface winds, for the dynamical forecast of tropical 

SSTs, and proved to be effective in improving the forecast skill of SSTs (Ji et al. 1994). A proper 

soil moisture initialization combined with precipitation MOS correction might enhance further 

the seasonal forecast skills of US summer climate. 

Finally, we note that our analysis only provides an estimate for the potential predictability 

related to the interannual variability of the soil moisture anomalies. Such estimates can be easily 

biased by the GCM characteristics, and remain to be substantiated by other modeling systems. 

Another factor that might have influenced our estimates for the potential predictability is the 

ensemble size of three used in this study. As was shown by Kumar and Hoerling (2000), the 

expected level of skill depends on the ensemble size. Given the fact that the expected level of 

skill progressively increases with increasing ensemble size, potential predictability estimates 

based on larger ensembles may be slightly higher than the ones obtained in the present analysis. 
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Figure Captions 

Figure 1. Daily, pentad and monthly mean precipitation averaged over the US continent, 

derived from the Cntl run for 1979. Large variations of daily and pentad precipitation are 

superimposed on the monthly means. 

Figure 2. Percent differences of the GCM simulated top-layer soil moisture content (left panels) 

and surface-air temperature (right panels) between the experimental runs (Daily, Pentad, and 

Monthly) and the control run (Cntl) in July, averaged for the1979-2000 period. Dotted lines are 

for negatives. 

Figure 3. Local correlations of the GCM simulated top-layer soil moisture content (left panels) 

and surface-air temperature (right panels) between the experimental runs (Daily, Pentad, and 

Monthly) and the control run (Cntl) in July for the1979-2000 period. 

Figure 4. Differences in soil moisture contents in the top 160 cm between the GCM simulations 

and the Huang et al. (1996) analysis in June, July and August, averaged for the 1979-2000 period. 

Left panels are for the gcm-rain runs in which the GCM was forced by its own pentad-mean 

precipitation. Right panels are for the obs-rain runs in which the GCM was forced by the 

observed GPCP pentad mean precipitation. Dotted lines are for negatives. 

Figure 5. Same as in Figure 4, except for local correlations. 
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Figure 6. Local correlations of surface-air temperature between the GCM simulations and the 

CAMS observations in June, July and August averaged for the 1979-2000 period. Left panels 

are for the gcm-rain runs, and right panels for the obs-rain runs. 

Figure 7. Local correlations of precipitation between the GCM simulations and the GPCP 

observations in June, July and August averaged for the 1979-2000 period. Left panels are for the 

gcm-rain runs, and right panels for the obs-rain runs. 

Figure 8. Mean correlations between prediction and observations averaged over the entire US 

continent. for (a) soil moisture, (b) precipitation, and (c) surface-air temperature, as shown in 

Figures 5-7 except for all months. Dotted lines are for the correlations between the gcm-rain 

runs and observations, and bold lines are for those between the obs-rain runs and observations. 

Figure 9. Pattern correlations of June-July-August mean anomalies for (a) soil moisture, (b) 

precipitation, and (c) surface-air temperature over the US continent from 1979 through 2000 

between the NCEP GCM simulations and the Observations as described in the text. Solid bars 

are for the gcm-rain runs for which precipitation assimilation was not applied. Cross bars are 

for the obs-rain runs for which the observed GPCP pentad-mean precipitation was used to force 

the land-surface component of the GCM. 
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Figure 1. Averaged daily, pentad and monthly mean precipitation over the US 

continents, derived from the C d  run for 1979. Large variations of daily and pentad 

precipitation are superimposed on the monthly means. 
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Figure 2. Percent differences of the GCM simulated toplayer soil moisture content (left 
panels) and surface-air temperature (right panels) between the experimental runs (Duily, 
Pentad, and Monthly) and the control run (Cntc) in July, averaged for the1979-2000 
period. Dotted lines are for negatives. 
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Figure 3. Local correlations of the GCM simulated toplayer soil moisture content (left panels) 
and surface-air temperature (right panels) between the experimental runs (Duil', Pentud, and 
Monthly) and the control run (Cntl) in July for the1 979-2000 period. 



(a) gcm-rain, Jun 

Figure 4. Differences in soil moisture contents in the top 160 cm of the soil between the GCM 
simulations and the H u g  et al. (1996) analysis in June, July and August averaged for the 1979- 
2000 period. Left panels are for the gcm rain runs in which the GCM was forced by its own 
pentad-mean precipitation. Right panels &e for the obs rain runs in which the GCM was forced 
by the observed GPCP pentad mean precipitation. Dotted lines are for negatives. 
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Figure 5. Same as in Figure 4, except for local correlations. 
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Figure 6. Local correlations of surface-air temperature between the GCM simulations 
and the CAMS observations in June, July and August averaged for the 1979-2000 period. 
Left panels are for the gcm-rain runs, and right panels are for the obs-rain runs. 
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Figure 7. Local correlations of precipitation between the GCM simulations and the 

GPCP observations in June, July and August averaged for the 1979-2000 period. Left 

panels are for the gcm-rain runs, and right panels are for the obs-ruin runs. 
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Figure 8. Mean correlations averaged over the entire US continents, for (a) soil moisture, (b) 
precipitation, and (c) surface-air temperature, as shown in Figures 5-7 except for all months. 
Dotted lines are for the correlations between the gcm-ruin runs and observations, and bold lines 
are for those between the 06s-ruin runs and observations. 
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Figure 9. Pattern correlations of June-July-August mean anomalies for (a) soil moisture, (b) 
precipitation, and (c) surface-air temperature over the US continent fiom 1979 through 2000 
between the NCEP GCM simulations and the observations as described in the text. Solid bars 
are for the gcm-ruin runs for which precipitation assimilation was not applied. Cross bars are 
for the obs-ruh runs for which the observed GPCP pentad-mean precipitation was used to force 
the land-surface component of the GCM. 


